
focusengineering Internet software

0 7 4 0 - 7 4 5 9 / 0 2 / $ 1 7 . 0 0 © 2 0 0 2 I E E E M a r c h / A p r i l 2 0 0 2 I E E E S O F T W A R E 5 1

technology-independent reuse and sharing
of content, data, and messaging but at the
expense of encapsulation and the associa-
tion of behavior with state, which is central
to OO.

Scripting languages, common on the
Web, are often optimized for rapidly creat-
ing simple functionality rather than for
modular construction of large programs.
Also, such languages typically lack the rich
development environments of general-pur-
pose languages. Some Web developers even
deliberately disregard software engineering
principles. They argue that if we’re just
writing scripts, they don’t merit the kind of
engineering techniques—object or other-
wise—we apply to “real” systems.

However, software engineering and OO
techniques are gaining importance in Web
development as Web applications become
more complex and integrated with tradi-
tional server-side applications. To motivate

the need for these techniques, we examine
some representative Web technologies and
the issues they present in naive use. We de-
scribe a layered, OO architecture, based on
the Model-View-Controller (MVC) pattern,
which can overcome these issues to produce
large, well-structured systems.

Motivations
If we consider scripts from an OO and

layering perspective, the most immediate
problem is that a single script has responsi-
bilities spanning several layers (see the “Def-
initions” sidebar for an explanation of our
terminology). The script must

� Accept input
� Handle application logic
� Handle business logic
� Generate output (presentation logic)

This couples all the layers together, making

Objects and the Web

Alan Knight, Cincom Systems

Naci Dai, ObjectLearn

Good design
practices are
increasingly
important in Web
development. Here,
the authors apply
such practices
using a framework
for layered
architectures based
on the Smalltalk GUI
development pattern
of Model-View-
Controller.

A
pplying software engineering principles, particularly object-ori-
ented techniques, to the Web can be difficult. Many current Web
technologies lend themselves to—or even encourage—bad prac-
tices. Scripting and server-page technologies can encourage cut-

and-paste reuse, direct-to-database coding, and poor factoring. Component
models such as the Component Object Model (COM) and Enterprise Java-
Beans (EJB) seek to construct building blocks for application assembly, but in
doing so they sacrifice many of the advantages of objects. XML emphasizes

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on June 18,2010 at 23:56:58 UTC from IEEE Xplore. Restrictions apply.

it harder to modify or test any particular
aspect in isolation. In addition, there are
significant issues related to handling these
responsibilities, as described below. For
server pages used alone, the same issues ap-
ply (because we can consider a server as a
script with some additional embedded
HTML), and mixing code with the HTML
also presents code management and debug-
ging issues.

Accepting input
When accepting input, a script receives ei-

ther the raw HTTP input stream or a mini-
mally parsed representation of it. HTTP sup-
ports several different mechanisms for
passing parameters (encoding into the URL,
query values, or form data), and all of these
pass the data as simple strings. Each script
must know or determine the parameter-pass-
ing mechanism, convert the parameters to

5 2 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 2

Here we define our terminology and goals. In the main text,
we present a layered architecture, implemented using both scripts
and server pages. Most of these techniques can be applied to
any technology in these categories, but where the details of a
specific technology are important, we use servlets and Java-
Server Pages as representative technologies. Both, while nomi-
nally Java specifications, can easily be applied to other lan-
guages, and implementations in both Smalltalk and C++ are
commercially available.

Layered architecture
A layered architecture is a system containing multiple,

strongly separated layers, with minimal dependencies and in-
teractions between the layers. Such a system has good separa-
tion of concerns, meaning that we can deal with different areas
of the application code in isolation, with minimal or no side ef-
fects in different layers. By separating the system’s different
pieces, we make the software adaptable so that we can easily
change and enhance it as requirements change. The layers we
are concerned with here include input, application logic, busi-
ness logic, and presentation.

Input
The input layer contains the code concerned with processing

and syntactically validating input. In a Web context, this pro-
cessing and syntactically validating input includes HTTP input
parsing and extracting parameters from an HTTP request. In the
Model-View-Controller framework, this corresponds to the input
controller.

Application logic
The application logic code is concerned with the applica-

tion’s overall flow. We often refer to it as the glue layer, sepa-
rating business logic from input and presentation logic and
managing the interface between the two. This requires some
knowledge of both layers. For example, this layer would be in-
volved in converting between presentation-level inputs and out-
puts as strings and the corresponding business object messages
or state. This layer might also manage a multipage Web inter-
action as a sequence of steps. In the Model-View-Controller
framework, this corresponds to the application controller.

Business logic
The business logic code is concerned only with the underly-

ing business functionality. This code should be entirely unaware
of the presentation being used. We also refer to business ob-
jects, which implement the business logic. In a complex appli-
cation, business logic is likely to be the largest component and
can include code that accesses external systems such as data-
bases, external components, and other services. In the Model-
View-Controller framework, this corresponds to the model.

Presentation
This layer contains code and noncode resources (such as

HTML text and images) used to present the application. It typi-
cally contains little code—code concerned only with formatting
and presenting data. An example of this in a Web context is a
server page’s code fragments that print values into a dynami-
cally generated Web page. In the Model-View-Controller
framework, this corresponds to the view.

Scripts
Many basic Web technologies can be grouped together in

the category of scripts—small programs that perform HTTP pro-
cessing. This term encompasses, among others, compiled CGI
programs, files of scripting language code (such as Perl,
Python, Ruby, and VBScript), and Java servlets. While there are
significant differences among these technologies, all of them
have the fundamental characteristic of being programs that ac-
cept an HTTP request and send back a response. In basic us-
age, each script is stateless and independent of all others. An
important distinction within this category is whether scripts can
share memory with other scripts (for example, servlets) or are
entirely independent (for example, CGI programs). Shared
memory allows more effective use of system resources through
pooling, and a simpler programming model through persistent
states at the cost of a more complex infrastructure.

Server pages
An alternative mode of HTML scripting is that of an HTML

page annotated with small amounts of code. Many scripting lan-
guages support this kind of facility in addition to pure scripts, and
representative examples include JavaServer Pages (JSP), Mi-
crosoft’s Active Server Pages, PHP, and Zope. There are also vari-
ations on this approach in which the pages are annotated with
application-specific HTML or XML tags, and developers can spec-
ify code to be run when these tags are encountered. Examples of
this include JSP bean and custom tags and Enhydra’s XMLC.

Definitions

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on June 18,2010 at 23:56:58 UTC from IEEE Xplore. Restrictions apply.

appropriate types, and validate them. This
causes code duplication between scripts.

Handling application logic
Another issue, which affects both input

and application logic, is the lack of informa-
tion hiding when accessing request and ses-
sion data. The script must retrieve input data
from the request by name. HTTP is a state-
less protocol, so data used in multiple scripts
must be either stored in a session identified
with the user or reread from an external data
source in each script requiring the data. For
example, if a script passes login information
as form data, the code to store that informa-
tion in the session might be

password = request.getParameter

(“passwordField”);

decrypted = this.decode

(password);

request.getSession().putValue

(“password”,decrypted);

Both storage in the session and storage in
an external data source are effectively global
in scope, and the application accesses them in
dictionary-like fashion using strings as keys.
Normal programming mechanisms for con-
trolling variable access do not apply to this
data, and any scripts or server pages that wish
to use this data must be aware of the naming
conventions. We cannot easily find all accesses
to the variables using programming-language
mechanisms, so modifications become more
difficult. If the script does not encapsulate
these conventions, knowledge of them and of
the HTTP protocol’s details can spread
throughout the application, greatly hindering
adaptation to new uses. Furthermore, this is a
potential source of errors because of both
spelling errors and different scripts using the
same name for different purposes. As the
number of scripts or server pages increases,
these problems become overwhelming.

When using server pages for application
logic, we are adding potentially significant
amounts of code to the page. Code manage-
ment techniques are not usually available for
code inside server pages. With many tech-
nologies, debugging code inside the server
pages is difficult. Features of modern devel-
opment environments for code authoring and
interactive debugging might not be available,
and for compiled languages we might need to

debug inside complex generated code. For
these reasons, it is a good idea to minimize the
amount of code in server pages and to keep
application logic out of the pages.

Handling business logic
Because all of the code is grouped to-

gether, it is difficult to isolate the business
logic from the other layers, particularly ap-
plication logic. Furthermore, unless we can
run portions of the scripts separately, it is
impossible to test the business logic (or any
of the other layers) independently.

With server pages, business logic presents
the same issues that we discussed for appli-
cation logic. We can very quickly have too
much code in the pages, and even pages
with minimal code are difficult to manage
and debug.

Generating output
In producing output, simple scripts mix

the HTML encoding of the result with the
dynamic data. This couples the page’s look
and feel with the other layers. Changing the
Web site’s look or adapting the application to
multiple output devices becomes extremely
difficult. The latter is becoming increasingly
important as the Web expands to include de-
vices such as WAP (Wireless Application Pro-
tocol)-connected mobile phones and other
small devices.

Server pages help address this last issue by
letting Web designers design and maintain
the pages and by letting programmers pro-
vide annotations. This is generally considered
the most appropriate use for server pages.

Model-View-Controller
To overcome these difficulties, we can use

a combination of scripts, server pages, and
application code. The approach we present
here is part of a family of possible approaches
we have used1,2 to properly partition respon-
sibilities and overcome weaknesses in the un-
derlying technologies (see the “A Related Ap-
proach” sidebar for a comparison). MVC
strongly influences our approach, so we first
examine its history.

MVC concepts
MVC originated in the Smalltalk-80 system

to promote a layered approach when develop-
ing graphical user interfaces.3 It emerged in the
late 1970s and early 1980s, long before such

M a r c h / A p r i l 2 0 0 2 I E E E S O F T W A R E 5 3

It is a good idea
to minimize the
amount of code
in server pages

and to keep
application logic
out of the pages.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on June 18,2010 at 23:56:58 UTC from IEEE Xplore. Restrictions apply.

interfaces had become mainstream. It defined
three different components (see Figure 1a):

� The model handles application and
business logic.

� The view handles presentation logic.
� The controller accepts and interprets

keyboard and mouse input.

The intention was to separate the model
(meaning nonGUI) code from its presentation.
The model code didn’t contain any GUI infor-
mation, but it broadcast notification of any

state changes to dependents, which were typi-
cally views. This is similar to many current
GUI component models, of which JavaBeans
is perhaps the most widely known.

This scheme provided a good separation
between these three layers but suffered from
two weaknesses. First, it had a simplistic
view of the model and did not account for
any difference between application logic (for
example, flow of control and coordination
of multiple widgets in a GUI) and business
logic (for example, executing a share pur-
chase). Second, most GUI libraries and win-
dowing systems combined the view and con-
troller functions in a single widget, making
the logical separation into view and con-
troller less useful. Later versions of Smalltalk
with operating system widgets chose not to
use a separate controller. All of the Smalltalk
versions eventually introduced an additional
layer to handle application logic, distinct
from the business objects. Perhaps the most
elegant of these is Presenter, as used in, for
example, Taligent and Dolphin Smalltalk.4,5

Together, these revisions changed the
common understanding of the framework,
such that the term controller now refers to
the object handling application logic and
the term model is reserved for business ob-
jects (see Figure 1b). To distinguish these
two interpretations of MVC, we use model
to refer to business objects, and we use in-
put controller and application controller to
refer to the two types of controllers.

MVC for the Web
To apply MVC to the Web, we use a com-

bination of scripts, server pages, and ordi-
nary objects to implement the various com-
ponents in a framework we call Web
Actions. In this context, both versions of the

5 4 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 2

There are many frameworks and design patterns influenced
by layering, the Model-View-Controller pattern, and object
principles. In general, using servlets and server pages together
and keeping code out of the server pages as much as possible
is referred to in Java circles as model 2 Web programming
(see http://java.sun.com/j2ee). The most widely known frame-
work using these principles is the open source Jakarta Struts
(see http://jakarta.apache.org/struts).

Struts is a controller framework for Java to build JavaServer
Pages-based views that are linked to business models using a
single controller servlet. Struts is very close to many of our con-
cepts and also uses a single input controller servlet, but it dif-
fers in some significant areas. Most notably, it does not distin-
guish a separate application controller, distinguishing only

input, action, presentation, and model.
Application controller responsibilities are assigned to ac-

tions, model objects, or declarative aspects of the framework.
Actions are command objects, and Struts suggests that they
should delegate as much behavior as possible to the model, but
coding examples include application control or even model be-
havior in some actions. The transition to the next page after an
action is controlled by the developer by editing configuration
files. One other difference is that Struts classifies model objects
into “bean forms” that have only state, and more normal ob-
jects with both function and behavior. These bean forms are
used to store data for input or presentation processing. We
have no corresponding layer and are unclear as to the role of
pure state objects in an OO framework.

A Related Approach

Model View

Controller

(a)

Notifications

Display

Keyboard,
mouse

Application
controller

Business
objects

View

Input
controller

(b)

Notifications

Notifications

Business logic layer Tool layer

Problem space User interface

View layer

Figure 1. (a) The
original Smalltalk-80
Model-View-Controller
pattern and (b) the
revised Model-View-
Controller.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on June 18,2010 at 23:56:58 UTC from IEEE Xplore. Restrictions apply.

MVC are relevant, particularly the dual uses
of the term controller. For HTTP applica-
tions, input and presentation are entirely
separate, so an input controller distinct from
the view is useful. For applications of any
complexity, we also need an application con-
troller to separate the details of application
flow from the business logic.

Figure 2 shows the framework’s basic ob-
ject structure.

Input controller. We implement the input con-
troller as a script. One of the framework’s
important features is that there is a single in-
put controller for all pages in a Web appli-
cation. The input controller parses input, de-
termines the parameter-passing mechanisms,
extracts any necessary information from the
request, cooperates with the application
controller to determine the next action, and
invokes that action in the correct context.

By having a single script as an input con-
troller, we localize any knowledge of HTTP
or naming conventions at the request level,
reduce code duplication and the total num-
ber of scripts, and make it easier to modify
any of the input processing, because there is
a single point of modification.

Note that the input controller class is
shown as an abstract class, with one imple-
mentation for accessing the applications
over HTTP with a regular Web browser and
another implementation for accessing the
applications using a WAP-enabled device.

Application controller. We implement the ap-
plication controller as a regular object—not
as a script or server page. It coordinates
logic related to the application flow, handles
errors, maintains longer-term state (includ-
ing references to the business objects), and
determines which view to display. We store
the application controller in the session us-
ing a key known to the input controller.
This relies on a naming convention, with
the disadvantages described earlier, but be-
cause this is the only thing stored directly in
the session, the impact is minimized.

A single application controller is respon-
sible for multiple Web pages. In a simple
application, it might be responsible for all
pages; in a complex application, there are
multiple application controllers for different
areas of the application.

By using a single, well-encapsulated ob-

ject as the central point of reference for any
persistent information, the application con-
troller resolves the issues of information
hiding and naming conventions. Rather
than storing isolated pieces of information
in the session, we store them in business ob-
jects and access them using messages from
the application controller. Programming-
language mechanisms let us track use of the
application controller and business objects
and more easily modify our code. If we are
using a statically typed language, we also
get static type checking as an additional val-
idation of data usage.

Action. The single input controller will in-
voke one of many possible actions on each
request. One of its responsibilities is to de-
termine which one. This depends on both
the input from the user and on the applica-
tion’s current state, so it must be determined
in conjunction with the application con-
troller. We represent the result of this deter-
mination as an Action object (an implemen-
tation of the Command pattern described
elsewhere6).

Business objects. We implement business ob-
jects as normal objects that contain only
business logic, so they should have no knowl-
edge of any other layers. The application
controller is the only thing that manipulates
the business objects, and for this reason they
are not shown in Figure 2 but are inside the
application controller. Both of these attri-
butes make it much easier to develop and test
the business logic in isolation from the Web
infrastructure. Because the business objects

M a r c h / A p r i l 2 0 0 2 I E E E S O F T W A R E 5 5

HTTP

Finds and executes

JavaServer
Page view

WAP

Action

Input
controller

HTTP input
controller

WAP input
controller

Application
controller

Java-
Server
Page

XML

View

XML view

Figure 2. The Web
Actions framework.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on June 18,2010 at 23:56:58 UTC from IEEE Xplore. Restrictions apply.

might be isolated, we should be able to use
the same implementation for a thin-client
Web application, a more rich-client imple-
mentation, or even a traditional GUI.

View. We implement views as server pages,
which can access the application controller
and business objects. Views should contain as
little code as possible, delegating most func-
tionality to the application controller or busi-
ness objects. Only code directly related to
presentation in the current page should be
used in a page. If supported, we prefer to use
a tag mechanism such as JavaServer Pages
(JSP) custom tags to remove code from the
pages altogether.

Figure 2 shows two different view mecha-
nisms. The first uses a server page implemen-
tation, appropriate for a Web browser or
WAP device. The second generates the same
information in an XML format, which could
be sent to an applet, an ActiveX control, or a
GUI application.

Web actions: Control flow
By organizing the scripts, server pages, and

regular objects as we’ve described, we’ve over-
come many of the issues associated with sim-
ple Web development. We have minimized
code duplication and reliance on the proto-
col’s details or naming conventions by using a
single input script. We have also achieved
good information hiding by maintaining the
data in objects rather than as flat session data.
We have confined our use of server pages to
the view layer, maximizing the amount of code
we can manage and debug using standard pro-
gramming tools and methods. By keeping each
layer separate, we can test each in isolation.
Overall, our application remains well-factored
and easy to maintain and extend.

To see how this works in more detail,
let’s examine the flow of control from a sin-
gle Web request in an online banking appli-

cation. First, we see how the input con-
troller accepts input, finds and sets up for
the action, executes the appropriate applica-
tion controller code, and then delegates to
the view. Figure 3 shows sample code for
this, and here we examine each of the steps.

Find the controller
The input controller must determine

which application controller is responsible
for the current request. Active application
controllers are stored in the session. We as-
sume that we can determine the controller
using a lookup based on the request’s path.
For example, in our banking application,
we might have an account maintenance ap-
plication controller, which is used for any
pages related to account maintenance.

Accept input
Once we have determined the application

controller, we must extract the appropriate
information from the request and transfer
that information to the application con-
troller. Most notably, we need to find any
input parameters. These can be encoded as
part of the URL, as query parameters listed
after the URL, or as form data. Regardless
of the transmission mechanism, this input
consists entirely of strings and must be con-
verted into the appropriate types and vali-
dated. The input controller extracts the in-
formation and, in cooperation with the
application controller, performs basic syn-
tactic validation and informs the applica-
tion controller of the values.

For example, we might have a user re-
quest to transfer funds such as

https://objectbank.com/

InputController/transfer?from=

123&to=321&amt=$50.00

The string /transfer identifies the action to

5 6 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 2

Figure 3. Java code
for an input
controller servlet.

public void service(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException {

ApplicationController controller = this.appControllerFor(req);

this.setValuesIn(controller, request);

String actionID = req.getPathInfo();

Action action = controller.actionFor(actionID);

appController.performAction(action);

View view = this.viewFor(req);

view.forwardPage(controller.nextPage());

}

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on June 18,2010 at 23:56:58 UTC from IEEE Xplore. Restrictions apply.

the input controller. The remainder of the
string holds query parameters for the two ac-
count numbers and the amount to transfer.

On the other hand, a request to update ac-
count holder data might be submitted from
an HTML form and would carry many pieces
of data as form data, invisible in the URL:

https://objectbank.com/

InputController/updateAccountData

Find the action
The application controller can keep track

of a set of acceptable sequences of operations
and the previous steps the user has taken. On
the basis of this and the information submit-
ted in the request, we can determine which ac-
tion to take and whether this action is legal in
the current context. This logic is particularly
important because Web users can use the
Back button to throw off the sequence of op-
erations in a way that is not possible in a GUI.

In the simplest version, we might define
actions for login, logout, transfer between ac-
counts, account update, and bill payments.
Any account activity is allowed once the user
has logged in, but actions transferring money
have a confirmation page. We only let the
user confirm a request if the immediately
previous operation was the request. We also
detect the situation in which the user backs
up and resubmits the same request or hits the
Submit button repeatedly while waiting for
the first submission to be processed.

Perform the action
Once we have determined which action

to take, we must execute it. The exact pro-
cedure for this varies depending on which
implementation we choose. We might
choose to have heavyweight actions, imple-
mented as objects inheriting from a class
Action and implementing a trigger method.

public void trigger(Controller

controller){

BankController ctrlr=

BankController)controller;

Account acct=ctrlr.readAccount

(context.getAccountNo());

ctrlr.setCurrentAccount(account);

ctrlr.setNextPage(“account

Summary”);

}

This lets us separate the different actions, but
it does not give us as much encapsulation in
the application controller as we might like.
Rather than the standard OO usage of mul-
tiple methods on a single object, we have
many action objects that manipulate the con-
troller’s state, providing little encapsulation.

As an alternative, we can represent the
action simply as an indicator of the applica-
tion controller method to be performed.
This is particularly easy in a system such as
Smalltalk, with simple reflection techniques.
Given a Smalltalk servlet and JSP frame-
work,7 we can simply set the action

action := #deposit.

and then execute

controller perform: action.

In this case, the action is simply the action
method’s name, and we invoke it with the
standard perform: method. No action class
or trigger operation is necessary.

Which of these choices is preferred depends
on the situation. Keeping code and data to-
gether in the application controller provides
better encapsulation but raises potential team
issues of having many people collaborating on
a single object. In a GUI presentation, it might
also be desirable to use the full Command pat-
tern to better support Undo functionality.

Forward the request
We use forwarding to divide responsibil-

ity among different components. Once the
action is complete, we determine the URL of
the next page to be displayed and forward
the request. In a simple system, the actions
can directly determine the next page. In a
more complex system, the application con-
troller might coordinate this using internal
state management such as a state machine.

Variations
We have described one particular imple-

mentation of this type of framework. Many
others are possible, and in our uses of this
framework, we have made significant varia-
tions depending on the application’s precise
needs.

Complex views
We have described views as mapping di-

M a r c h / A p r i l 2 0 0 2 I E E E S O F T W A R E 5 7

Keeping code
and data

together in the
application
controller

provides better
encapsulation

but raises
potential team

issues of having
many people

collaborating on
a single object.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on June 18,2010 at 23:56:58 UTC from IEEE Xplore. Restrictions apply.

rectly to server pages, but in more complex
applications, this can become more sophis-
ticated. First, we can assemble larger views
from multiple smaller views. So, we might
have a main page with subsections in frames
or with subsections determined by including
the results of other Web requests. We could
model this structure either by explicitly is-
suing new requests or by using an internal
mechanism to forward the request to an-
other partial page.

We might also want to interpose another
layer of objects at the view level. For exam-
ple, if handling multiple possible forms of
output, we might need an explicit View ob-
ject that handles the output details on a par-
ticular device. For example, we might store a
key that lets the View identify the appropri-
ate output. This might delegate to different
server pages for HTML and WAP presenta-
tion and to a screen identifier for a GUI. Us-
ing a View object helps isolate the presenta-

tion of an action’s results from the action it-
self. It is also an appropriate place to imple-
ment functionality such as internationaliza-
tion of the result.

Action context
We have described an architecture with

very lightweight actions in which state is as-
sociated directly with the application con-
troller. In some situations, it might be useful
to dissociate some of this state from the
controller. In particular, if we do not have a
simple mapping from the URL to the appli-
cation controller, we might need to extract
more of the request state to determine the
correct controller. We can do this by intro-
ducing an ActionContext object, which
stores the request state in a standardized
form. In this case, we would create the con-
text, use it to find the appropriate con-
troller, and then apply actions to the combi-
nation of controller and context.

5 8 I E E E S O F T W A R E M a r c h / A p r i l 2 0 0 2

PURPOSE The IEEE Computer Society is the world’s

largest association of computing professionals, and is the

leading provider of technical information in the field.

MEMBERSHIP Members receive the monthly

magazine COMPUTER, discounts, and opportunities

to serve (all activities are led by volunteer mem-

bers). Membership is open to all IEEE members,

affiliate society members, and others interested in

the computer field.

B O A R D O F G O V E R N O R S
Term Expiring 2002: Mark Grant, Gene F. Hoff-
nagle, Karl Reed, Kathleen M. Swigger, Ronald
Waxman, Michael R. Williams, Akihiko Yamada

Term Expiring 2003: Fiorenza C. Albert-
Howard, Manfred Broy, Alan Clements, Richard
A. Kemmerer, Susan A. Mengel, James W. Moore,
Christina M. Schober

Term Expiring 2004: Jean M. Bacon, Ricardo
Baeza-Yates, Deborah M. Cooper, George V. Cy-
benko, Wolfgang K. Giloi, Haruhisha Ichikawa,
Thomas W. Williams
Next Board Meeting: 10 May 02, Portland OR

I E E E O F F I C E R S
President: RAYMOND D. FINDLAY

President-Elect: MICHAEL S. ADLER

Past President: JOEL B. SYNDER

Executive Director: DANIEL J. SENESE

Secretary: HUGO M. FERNANDEZ VERSTAGEN

Treasurer: DALE C. CASTON

VP, Educational Activities: LYLE D. FEISEL

VP, Publications Activities: JAMES M. TIEN

VP, Regional Activities: W. CLEON ANDERSON

VP, Standards Association: BEN C. JOHNSON

VP, Technical Activities: MICHAEL R. LIGHTNER

President, IEEE-USA: LeEARL A. BRYANT

EXECUTIVE COMMITTEE
President: WILLIS K. KING*
University of Houston
Dept. of Comp. Science
501 PGH
Houston, TX 77204-3010
Phone: +1 713 743 3349 Fax: +1 713 743 3335
w.king@computer.org

President-Elect: STEPHEN L. DIAMOND*

Past President: BENJAMIN W. WAH*

VP, Educational Activities: CARL K. CHANG *

VP, Conferences and Tutorials: GERALD L. ENGEL*

VP, Chapters Activities: JAMES H. CROSS†

VP, Publications: RANGACHAR KASTURI†

VP, Standards Activities: LOWELL G. JOHNSON

(2ND VP)*

VP, Technical Activities: DEBORAH K. SCHER-

RER(1ST VP)*

Secretary: DEBORAH M. COOPER*

Treasurer: WOLFGANG K. GILOI*

2001–2002 IEEE Division VIII Director:
THOMAS W. WILLIAMS

2002–2003 IEEE Division V Director:
GUYLAINE M. POLLOCK†

Executive Director: DAVID W. HENNAGE†

*voting member of the Board of Governors

COMPUTER SOCIETY WEB SITE
The IEEE Computer Society’s Web site, at
http://computer.org, offers information and samples
from the society’s publications and conferences, as
well as a broad range of information about technical
committees, standards, student activities, and more.

COMPUTER SOCIETY O F F I C E S
Headquarters Office

1730 Massachusetts Ave. NW
Washington, DC 20036-1992
Phone: +1 202 371 0101 • Fax: +1 202 728 9614
E-mail: hq.ofc@computer.org

Publications Office
10662 Los Vaqueros Cir., PO Box 3014
Los Alamitos, CA 90720-1314
Phone:+1 714 821 8380
E-mail: help@computer.org
Membership and Publication Orders:
Phone: +1 800 272 6657 Fax: +1 714 821 4641
E-mail: help@computer.org

European Office
13, Ave. de L’Aquilon
B-1200 Brussels, Belgium
Phone: +32 2 770 21 98 • Fax: +32 2 770 85 05
E-mail: euro.ofc@computer.org

Asia/Pacific Office
Watanabe Building
1-4-2 Minami-Aoyama, Minato-ku,
Tokyo 107-0062, Japan
Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553
E-mail: tokyo.ofc@computer.org

E X E C U T I V E S T A F F
Executive Director: DAVID W. HENNAGE
Publisher: ANGELA BURGESS
Assistant Publisher: DICK PRICE
Director, Volunteer Services: ANNE MARIE KELLY
Chief Financial Officer: VIOLET S. DOAN
Director, Information Technology & Services:
ROBERT CARE
Manager, Research & Planning: JOHN C. KEATON

11-FEB-2002

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on June 18,2010 at 23:56:58 UTC from IEEE Xplore. Restrictions apply.

Business logic and components
We have not devoted a great deal of dis-

cussion to the business logic layer, because
we consider it to be a normal OO program.
However, it can be quite complex and in-
volve any number of other technologies.
One that frequently comes up is the rela-
tionship between this layer and compo-
nents, particularly Enterprise JavaBeans.
Some frameworks (when using Java) use en-
tity EJBs as a standards-based solution for
the business object layer.

We do not generally consider this to be a
good solution. Although the business logic
layer might have good reasons for accessing
components—most notably session beans en-
capsulating access to transactional or legacy
systems—using entity beans to represent the
business logic seems ill-advised. Entity beans
offer some automation potential for issues
such as transactions, security, and persistence,
but they impose serious limits on our design
and have significant performance constraints,
even relative to normal Java performance. In
particular, the absence of inheritance is a bur-
den, and other frameworks exist to deal with
transactions, security, and performance in the
context of normal business objects. Finally, it
is harder to test EJBs in isolation because they
require a container to run; this imposes in-
creased overhead on development. Using ses-
sion beans to wrap business objects or forgo-
ing EJBs altogether are both reasonable
alternatives.

U sing our framework, developers pri-
marily focus on writing application
code rather than dealing with

servlets, requests, or session variables. We
have used this in a variety of different Web
applications, using both Smalltalk and Java.
In this, we have achieved better software
quality because good OO principles were
not dictated but followed naturally from the
structure of the framework. Paradoxically, it
also allowed developers inexperienced with
OO techniques to produce high-quality code
without knowing the details of the frame-
work too well. These frameworks could be
extended in several different areas, including
customization to particular domains, con-
version into a full-fledged framework rather
than a set of patterns, and more detailed
adaptation to particular technologies.

Acknowledgments
The authors thank Michael Ellis and Martin Fowler

for their contributions to the ideas expressed here.

References
1. M. Ellis and N. Dai, “Best Practices for Developing

Web Applications Using Java Servlets,” OOPSLA 2000
tutorial; www.smalltakchronicles.net/papers/Practices.
pdf.

2. N. Dai and A. Knight, “Objects versus the Web,” OOPSLA
2001 tutorial; www.smalltalkchronicles.net/papers/
objectsXweb10152001.pdf.

3. E. Gamma et al., Design Patterns, Addison-Wesley,
Reading, Mass., 1994.

4. G.E. Krasner and S.T. Pope, “A Description of the
Model-View-Controller User Interface Paradigm in the
Smalltalk-80 System,” J. Object-Oriented Program-
ming, vol. 1, no. 3, Aug. 1988, pp. 26–49.

5. M. Potel, MVP: Model-Viewer-Presenter, tech. report,
IBM, 1996; www-106.ibm.com/developerworks/
library/mvp.html.

6. A. Bower and B. MacGlashan, “Model-View-Presenter
Framework,” 2001, www.object-arts.com/Education-
Centre/Overviews/ModelViewPresenter.htm.

7. VisualWave Application Developer’s Guide, tech. re-
port, Cincom Systems, 2001.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

M a r c h / A p r i l 2 0 0 2 I E E E S O F T W A R E 5 9

About the Authors

Alan Knight is a senior software developer
at Cincom Systems, where he works on Smalltalk
Web tools. He was also recently the technical
lead on a high-performance Smalltalk Web appli-
cation server supporting full implementations of
ASP, JSP, and servlets. His research interests in-
clude Web development, object-relational map-
ping, and team programming systems. He re-
ceived his BS and MS in computer science from

Carleton University in Ottawa, Canada. He is a member of the ACM. He
coauthored Mastering ENVY/Developer (Cambridge Univ. Press, 2001).
Contact him at 594 Blanchard Cr., Ottawa, Ontario, Canada K1V 7B8;
knight@acm.org.

Naci Dai is an independent mentor and an
educator. He teaches object technology, Java, de-
sign patterns, and distributed computing. He
leads and mentors Web development projects. He
has a background in applied engineering and
computational physics. He has received his PhD
in mechanical engineering from Carleton Univer-
sity. He is a member of the ACM. Contact him at
Acarkent C75, 81610 Beykoz, Istanbul, Turkey;
nacidai@acm.org.

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on June 18,2010 at 23:56:58 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

